
Core Research and Development 

believe that a promising approach is to enrich the representational structure of our 
network language, so that the program knows not only that “X causes Y”, but also has 
enough detailed knowledge so that it can explain why the connection is plausible. Such 
a program could aid the knowledge acquisition process by automatically critiquing the 
evolving network. Moreover, the program would ask questions to help it fill in the 
gaps and lack of coherency it detects. 
Using the above example, after being told an implication (ordinary heuristic rule) 
relating brain-mass-lesion and brain-tumor, the program would attempt to classify these 
terms as processes or substances, note the locations, and isolate the particular causal 
interaction (mass causes a lesion). The key to such a capability is a representation 
language that defines concepts in terms of a relatively small number of relations (such 
as the conceptual dependency notation of Schank), plus generic knowledge of physical 
processes (e.g., the idea of a mass growing in size severing an enclosing substance). A 
great deal of research in qualitative reasoning of physical processes [3]. particularly the 
research of Wendy Lehnert, lays the foundation for this kind of investigation. 
The learning program we will construct could be termed “the advice requester.‘* We 
believe that the ability to ask good questions is the mark of a good student or 
researcher, and it can greatly focus the learning process. Asking good questions requires 
relevant background knowledge, so the learner can learn something new by relating it to 
some facts or some general framework he already understands. This process can be 
complex, because there are levels and perspectives for understanding. What may at first 
appear consistent, could become puzzling later as new gaps appear in an evolving 
network. Concepts in fact change their meaning as exceptions and complex special 
cases come to light 
Learning by asking is a form of knowledge-intensive learning, to be contrasted with 
research in automatic learning (becoming more efficient). For knowledge engineering, 
such an approach is a dramatic switch from giving the program surface causal rules that 
it in no sense understands, to giving a program knowledge of underlying causal models 
that enable the program to justify its causal network. Most importantly, these models 
provide a set of expectations of states and faults that might be included in a causal 
network. 
To take an example from another domain in which we are working, iron casting, one 
fault is a shrinkage cavity. Generic knowledge would indicate that a cavity is an 
absence of material, and that for casting the source of material is what is poured and a 
reservoir (part of the mold) to allow for shrinking. A built-in generic model would 
indicate three reasons why a source of material does not arrive at the sink: insufficient 
supply (reservoir is too small), supply lost by leaking, and blocked flow from source to 
sink. These three generic causes set up expectations for specific causal processes that 
will appear in the state network. A given knowledge base might refer to a model only 
once, but a library of such models would form the basis of a powerful knowledge 
acquisition program that could learn about new domains fairly quickly. We believe that 
this generic library of processes is part of what we call common sense knowledge. 
An advice requester that would be as proficient as our best knowledge engineers is 
obviously not going to be constructed in a year or two. Our approach will be first to 
study the causal networks we have constructed in medicine and casting. and re-represent 
the knowledge in structures that include the generic, underlying abnormal processes. 
Next, using a method we have found to be advantageous in the past for refining a 
knowledge representation, we will construct a simple teaching program that can explain 
such a causal network and help the student critique an incomplete network. Ultimately, 
we believe that teaching students to think like knowledge engineers, that is to learn the 
process of asking good questions. may be even more valuable than directly trying to 
convey our products, the constructed knowledge bases. 

Privileged Communication 151 E. H. Shortliffe 



Core Research and Development 

4. Qualitative Simulation 

GOALS 

In the context of the Molgen-II project, we are exploring the process of scientific 
theory formation and modification by computer. Qualitative simulation of biological 
processes is an important part of this goal because it is necessary to ask about the 
results of hypothetical experiments in the course of theory formation and running a 
detailed simulation is often too expensive. 

MOTIVATION 

We are carrying out this research by studying a specific biological system: the regulatory 
genetics of the E. Cofi tryptophan operon (the trp system). In the mid 1960’s Dr. 
Charles Yanofsky (who is a collaborator with us on this project) began to probe the 
existing theory of gene regulation in this operon. Yanofsky’s initial experiments 
revealed a number of anomalies. Since that time, Yanofsky’s research (which continues 
today) resulted in the discovery of a totally new mechanism of prokaryotic gene 
regulation, and continues to refine our knowledge of exactly how this mechanism 
functions. 
Our goal is to build a machine learning system which will accept an initial theory of 
gene regulation equivalent to that which Yanofsky began to probe in the 60’s. We will 
then present our system with a series of experimental results based on Yanofsky’s early 
observations. The learning system will then propose, implement, and attempt to 
confirm possible modifications to its theory of gene regulation. 
We view theories - such as that of the trp operon’s function - as problem solvers. The 
inputs to these problem solvers are descriptions of hypothetical experiments. The 
problem solver’s outputs are descriptions of the predicted results of these experiments. 
Thus our learning program will be attempting to improve the predictive performance of 
a problem solver in bacterial regulatory genetics. 
This research in machine learning presumes the existence of a simulator of the trp 
system. Building such a problem solver in itself raises interesting AI research issues in 
qualitative simulation. And building such a system in a form which can be reasoned 
about by another program (the learning element) complicates the problem even further. 
Below we discuss our past work on the construction of two versions of such a problem 
solver (“the simulator”). We then outline a number of interesting research issues which 
this work has raised, and the approaches we plan to pursue in the construction of the 
simulator. 

BACKGROUND 

Version I 

An exploratory version of the system was built in the Spring of 1984. The system was 
constructed using the UNITS system - one of the first general-purpose expert system 
building tools. 
This first system was more of a success as a static knowledge base than as a dynamic 
simulator. Building this system forced us to come up with a concrete conceptualization 
of the problem domain: we determined the full range of objects the system would have 
to simulate. and considered what types of properties and internal states these objects 
have. and how they should be represented within the UNITS system. This knowledge 
base was examined several times by our biologist collaborators (Yanofsky and Dr. 
Robert Landick - a post-doctoral fellow in Yanofsky’s lab) to help us detect errors and 
omissions. 

E. H. Shortliffe 152 Privileged Communication 



Core Research and Development 

The first system never contained much simulation capability. We did provide a 
mechanism whereby the state of the transcription mechanism could be determined after 
the user specified experimental conditions such as approximate tryptophan 
concentration and whether or not various objects such as the trp-R repressor and the 
trp promotor contained deleterious mutations or not. The simulation capability was 
essentially provided by backward chaining on the slot values of relevant units, with the 
actual inferences carried out by Lisp code attached to some slots. 
We learned a number of things from this prototype system. The knowledge base we 
created became a concrete record of the objects relevant to problem solving in this 
domain, and of design decisions regarding their representations. We also discovered a 
number of things about the UNITS system: 

1. Its knowledge base editor ran fairly slowly 

2. We encountered and fixed several significant bugs 

3. Its rule language is fairly awkward 

4. Its inheritance hierarchy lacked some important features, such as the ability 
of a given object to inherit slots from more than one parent class. 

(Note that points 1 and 2 result from UNITS having been developed and maintained 
within a university research environment.) 

We also confirmed an observation made long ago by other AI researchers. Previous 
work has shown that the simpler a language is. the more amenable it is to being both 
executed by one entity and interpreted by another entity (such as an explanation 
facility). This is one reason expert systems are now often encoded in production rules 
rather than Lisp. It became quite obvious that if our learning element is forced to 
reason about a simulator containing Lisp procedures, it would be significantly more 
complex than if the simulator were written in another language. Simple as the syntax 
of Lisp is. even a reasonable subset of full Interlisp would contain quite a large number 
of fairly complex constructs, and would complicate the learning element tremendously. 
We also made an interesting observation about how building an expert system can help 
experts think about their own domain. We will consider two examples of this 
particular idea. Both involve subclass units which were defined in the knowledge base 
by Karp and then discussed with Yanofsky and Landick. One subclass was called 
“DNA Segments” and was intended to include contiguous segments of DNA with 
discrete functions, such as: promoters, terminators, genes. and operators. Among the 
properties associated with this class were: sequence, position within some larger 
functional piece of DNA, and *‘generalized sequence” - an attempt to capture those 
sequence elements common to a given subclass of DNA Segments such as promoters. 
The other defined class of interest was termed “Molecular Switches’*. This was an 
attempt to represent the general notion of a molecule with two functional states, where 
transitions between states are caused by the binding and dissociation of the molecule 
from some other molecule. Examples of Molecular Switches are operators, promoters, 
and repressors. 
In both cases Yanofsky and Landick expressed interest in these concepts, and noted that 
biologists had coined no terms for them. This suggests that these concepts are in some 
sense new to biologists. We hypothesize that the process of constructing an expert 
system will naturally lead to the identification of such general concepts - or, 
equivalently - to the creation of analogies between known concepts. 

The reason for this is that in attempting to represent the behaviors of N different 
entities, it is often much more efficient (with respect to development time and code 

Privileged Communication 153 E. H. Shortliffe 



Core Research and Development 

volume) to develop one general-purpose procedure which yields the N different 
behaviors given different parameter bindings, than it is to develop a different procedure 
for all N cases. 
procedures. 

It is the knowledge engineer’s job to search for such general 

Version /I 

Recently we have begun building the next version of the simulation system. We are 
implementing this using the KEE knowledge engineering tool developed by IntelliCorp. 
This will free us from all the limitations of the UNITS system mentioned above. We 
have accomplished the initial obvious goal of porting the knowledge base defined using 
UNITS to KEE. 

Related Work 

Recently a significant amount of work has been done in AI in Qualitative Simulation 
(de Kleer and Brown, Forbus, Patil, Kuipers). While this work is somewhat relevant to 
the research we propose, there are several reasons why it is not sufficient. 
First, most of this work attempts to simulate systems described by Physics using 
differential equations. Much of this work is an attempt to generalize numerical 
differential equations into qualitative differential equations. However, Biology is a 
much younger science than Physics, and as such does not describe its mechanisms to 
nearly such a quantitative degree. Differential equations are rarely if ever used by 
Molecular Biologists, and hence qualitative differential equations do not 

RESEARCH PLAN 

The next step is to define the behavior for these objects so that actual simulations can 
be executed. 
defined? 

This raises the question: in what language should this behavior be 

We rule out Lisp for reasons discussed earlier. We also believe production rules are 
not a good language for defining this behavior, for reasons that will be outlined below. 
We now discuss the features we believe the simulator should provide, describe research 
questions these features raise, and consider what constraints such a simulator imposes 
on an underlying implementation language. 

Reasoning At Varying Levels Of Detail 

We believe it is important that the simulator be able to reason at varying levels of 
detail depending upon the demands of a particular problem. That is, it should be 
possible for the simulator to solve many problems without simulating every single 
process it knows about in the most detailed manner possible. Rather, given a problem 
statement the simulator should perform meta-level reasoning to determine which 
processes to simulate, and at which of several possible abstraction levels to simulate 
each process. For example, in an experiment involving an otherwise normal E. Co[i 
cell with a deleterious mutation in its trp-R protein, it should not be necessary to 
simulate the RNA-synthesis actions of RNA-polymerase at the nucleotide level. A 
more abstract representation of this process can be used (e.g., at the DNA Segment 
level). 
It should be obvious that humans solve problems in this way as illustrated by the 
preceding example (that is, biologists can predict the outcome of this experiment 
correctly without employing such a detailed simulation). As human performance in this 
domain is reasonably high, there is reason to believe that this approach is not a bad 

E. H. Shortliffe 154 Privileged Communication 



Core Research and Development 

idea. But what reason do we have to believe it is a good idea? Why not build a 
simple simulator that executes at one constant level of detail and be done with it? 
This simulator is really only a sub-system of the whole discovery system, and as such 
could be called on many times during a given “discovery deliberation”. It is thus quite 
possible that the speed of the simulator will affect the tractability of the discovery 
problem. 
In addition, learning itself is usually subject to large combinatorial explosions. 
Consider learning to be a search through a space of concept descriptions, where 
generalization and specialization are among the state transformation operators. The 
more concept description primitives there are to combine, the less feasible this 
computation becomes. If the simulator represents object structure and function at one 
very detailed level, there will be a huge number of primitives to recombine. But if 
objects are represented at different levels of abstraction, learning too may proceed using 
“primitives” at higher levels, where presumably there are few primitives at the less 
detailed levels. 
In Biology and the other Natural Sciences, many discoveries consist of the addition of 
detail to some model. Objects (e.g., ribosomes, atomic nuclei) which were once 
considered to be primitive black boxes have their insides probed to reveal a complex 
inner structure, or the range of their observed behaviors may increase. If our simulator 
is designed to represent and execute theories at different levels of detail, adding detail 
to an actual theory could be as natural as adding a new cell to the front of a linked 
list, 
Another issue is user interaction. Users will want to include high level vocabulary 
terms in their specifications of experiments. And similarly, they will want to see these 
terms used in predictions. (Note this constraint does not force the system to be able to 
reason at varying levels of detail). 
The issue of reasoning at different levels of detail is very relevant to current research 
in expert systems regarding “Deep vs Shallow reasoning”. Some researchers argue that 
the “shallow reasoning” or reasoning from ‘*empirical associations” used by traditional 
expert systems implemented in production rules (e.g., MYCIN) is qualitatively different 
from “deep reasoning” or reasoning from “first principles” which human experts are 
able to use when their “shallow reasoning” fails, or when “deep’, explanations are 
required. I claim that while it is certainly important to be able to reason in a more 
detailed manner when a standard approach to solving a problem fails, and that it is 
crucial to be able to provide deeper justification for a line of reasoning than simply 
citing rules X and Y, that there is no absolute distinction between “deep” and “shallow” 
reasoning. What is possible is to distinguish one line of reasoning from a deeper line 
which justifies it, The construction of this simulator should help to prove this point. 
Production rules have not been designed for the task of reasoning at varying levels of 
detail. It is important to design a language which explicitly provides this ability. 

Knowledge Representation 

The initial work done on the simulator has alerted us to unresolved issues in knowledge 
representation related to inheritance hierarchies. The inheritance hierarchies of both 
UNITS and KEE provide the ability to define properties of a given class unit which 
are inherited by subclasses or members of that class. But in fact this notion of class 
partitioning blurs together - and is used by knowledge engineers to represent - at least 
four different concepts. These are the concepts of class, abstraction, prototype, and 
object decomposition. Inheritance hierarchies also force one to make some choice about 
what is a primitive object in a given domain. Yet the notion of an individual is a 

Privileged Communication 155 E. H. Shortliffe 



Core Research and Development 

difficult concept to define - philosophers have devoted entire books to it. AI could 
benefit from a systematic study of all five of these concepts, and this simulator 
provides a challenging context in which to study them. 
Another idea to explore is object behavior structuring. A given object may potentially 
exhibit several different behaviors. For example, messenger-RNA binds to different 
molecules, is translated into protein, and is slowly degraded within the cell. Consider 
two different approaches to representing this behavior. In an object oriented approach, 
all behavior specifications for a given object are viewed as part of that object. Thus, at 
a given instant in time it is easy to determine exactly what behaviors a given object 
will demonstrate. Consider a process-oriented structuring of behavior. Using this 
approach, a given behavior is structured within some larger process of which it is a 
part, Thus, the binding of mRNA to a ribosome would be viewed as one element of 
the complex process of translation, which would be considered quite distinct from the 
process of mRNA degradation. This makes it difficult to reason about sets of 
asynchronous processes operating in parallel, but provides an easier way of reasoning 
about a long series of events which are causally connected. 
It is not clear what the precise trade-offs between these two approaches are. It may 
sometimes be necessary to employ both, which would probably require translation 
between the two. This distinction has been explored by the Computer Systems 
community, but these ideas should be transferred to the AI community and would 
probably gain some clarity in the process. seem to be useful simulation tools. 
Second, the other work in qualitative simulation simply has not addressed many of the 
issues we propose above, such as reasoning at varying levels of detail and making more 
sense out of inheritance hierarchies. 

Summary 

We propose the following: 

. To design a process specification language which will form the heart of the 
simulator for the trp system. This language will be fairly similar to 
production rules, but will overcome the shortcomings of production rules as 
discussed above. 

. To implement an interpreter for this language which will allow both forward 
simulation to predict the results of a specified experiment, and backward 
simulation, to suggest experiments which would explain an observed result. 

. To implement an actual simulator for the trp system. 

. To explore possible means by which the simulator should decide at what 
level of detail a simulation should be run to solve a given problem. 

. To explore issues in knowledge representation concerning the concepts of an 
abstraction, a prototype, a class, a composite object, and an individual. 

E. H. Shortliffe 156 Privileged Communication 



Core Research and Development 

5. Additional Basic Research of the Knowledge Systems Laboratory 
In addition to the core research described above, there is considerably more research in 
the KSL that draws on the SUMEX resource and that inter-relates to the whole SUMEX 
community. This is briefly summarized below in three main projects of the HPP, 
LOGIC, and HELIX groups of the KSL. 
description of the organization of the KSL.) 

(See Appendix A on page 285 for a 

Research on Multiprocessor Architectures for Symbolic Computation 

As the aspirations for applied AI work rise, expert systems are becoming more complex, 
and the symbolic computations involved more compute-intensive. Medical and 
biological applications share the widely felt need for more processing per dollar in the 
future. 

VLSI technology, of course, offers the prospect of inexpensive high speed computing, 
but only if methods can be found to organize large collections of processors and 
memories in systems for concurrent (parallel) processing. The Heuristic Programming 
Project began work on this problem in the mid-1970’s. with SUMEX computer support, 
in a project called HYDROID, whose major result was a system for a network of 
processors known as Contract Net [67]. HYDROID was reborn in 1983 as Advanced 
AI Architectures (AAIA), and has received funding support from DARPA and 
computing support partially from SUMEX. 

In the AAIA project, the proposed architectures are studied in simulation (on Symbol& 
workstations). The underlying architecture is a distributed processor and distributed 
memory network, simulated with our CARE simulator. On top of CARE various 
experiments in the development of Concurrent LISP are being done. Above the LISP 
level are levels of knowledge access and problem-solving framework. At the knowledge 
level, methods are being studied for rapid retrieval of objects and rules in a 
multiprocessor net. At the problem solving level, we are studying the “parallelization” of 
the Blackboard framework. The Blackboard framework was chosen because we felt that, 
overall, it was the most powerful of the modern AI problem solving organizations and 
offered significant opportunities for the exploitation of parallel processing. 
The top level is the level at which applications are programmed, and the opportunities 
for parallelism at this level are mostly domain- dependent. However we are studying in 
detail applications of the particular class known as signal-understanding (or signal-to- 
symbol transformations), hoping to discover a few generalizations applicable to the 
class. 
If the levels are “factored” carefully and correctly, the speed-ups from parallel 
processing.each level to the next, will multiply (!). yielding overall a major system-wide 
speed-up from modest gains at each level (which is all that one can hope for at 
present). The goal of the AAIA project is to refine the level-factoring and the speed- 
ups at each level over the next 2-4 years to produce an overall gain from 
multiprocessor “parallelism” of at least one hundred times that of conventional serial 
machines (as measured by the simulator). 

A Retrospective of the AGE Experiments 

The scientific work of the KSL is largely experimental in nature. Ideas are embodied 
in software systems and are tested in significant applications. The AGE project was one 
of those lengthy experiments. From the beginning it was supported by SUMEX as core 
research. It had multiple goals: a) to provide a readily useable software package for 
developing expert systems employing the Blackboard framework b) to study the 
Blackboard framework itself with a view toward simplifying and generalizing its various 

Privileged Communication 157 E. H. Shortliffe 



Core Research and Development 

mechanisms and c) to study the problem of how to build a “knowledge engineering 
workstation” environment (i.e. put KE expertise into the box). 
AGE-l exists, has been widely used, and is widely distributed. Many technical reports 
and papers exist. At the KSL, the scientific tradition is to bring together, summarize, 
and interpret the results of our multi-year thematic studies in a single scientific 
monograph that represents the best scientific sense we can make of the many 
experiments in the line of study. We did it with DENDRAL (Lindsay, Buchanan, et.al.), 
later with MYCIN (Buchanan and Shortliffe). We will soon begin the effort to do the 
necessary and appropriate AGE retrospective study. It will be done as a “background” 
effort to other activities and will take about three years (elapsed time). 

Research on Logic-Based Systems and Systems with Self-Awareness 

One of the key limitations on the technology of logic programming is that the usual 
logical rules of inference are too weak. While traditional logical implication is an 
essential part of expert reasoning, by itself it is inadequate to explain the cognitive 
performance of human experts or to serve as the sole basis for a practical logic 
programming technology. Over the next five years we propose to study and implement 
four specific advanced reasoning techniques, viz. uncertain reasoning for resolution, 
theory formation based on measures of probability and simplicity, efficiency-enhancing 
theory reformulation, and counterfactual implication. 
The key idea underlying logic programming is that of programming by description. In 
traditional software engineering, one builds a program by specifying the operations to 
be performed in solving a problem, i.e., by saying HOW the problem is to be solved. 
The assumptions on which the program is based are usually left implicit. In logic 
programming, one constructs a program by describing its application area, i.e., by saying 
WHAT is true. One makes one’s assumptions explicit and leaves implicit the choice of 
operations. 

Uncertain Reasoning 

The actual techniques used to implement uncertain reasoning facilities have increased in 
sophistication since the introduction of ‘*certainty factors” in MYCIN; the approach 
which has received the most attention recently is the use of Dempster-Shafer theory 
[64]. Here, ranges of probabilities are considered instead of specific values: this has 

the advantage that it is possible to describe situations where one is uncertain as to the 
accuracy of one’s information by representing it using a wide interval of possible 
probabilities. 
Existing work at Stanford has laid a theoretical foundation for the incorporation of 
Dempster-Shafer theory in a forward- or backward-chaining inference system. The 
inclusion of probabilistic information in a resolution-based system is not yet well 
understood, however, and coming to grips with this problem is one of the specific goals 
of this project, 

Theory Formatlon 

Many problems in AI involve learning by hypothesizing, including diagnosis, planning, 
natural language understanding, generation of tests or experiments, and the modelling of 
a user, agent or environment, Programs use bias to select among possible inductive 
hypotheses or theories. 
Previous AI research has formulated bias in a procedural and often ad hoc manner. 
We seek to represent the bias employed in traditional AI approaches to theory 
formation in a declarative manner, axiomatically and semantically, so as to incorporate 

E. H. Shortliffe 158 Privileged Communication 



Core Research and Development 

it into the logic programming methodology. One promising approach we plan to 
investigate is to represent inductive theories as the result of non-monotonic reasoning, 
in particular circumscription [46]. We aim to apply the tools of non-monotonic 
reasoning to the question of when and how to weaken an overly-strong bias, once a 
contradiction has arisen. 
We plan to investigate diagnosis, in particular diagnosis of faults in digital circuits, as 
an application of these theoretical ideas about theory formation. We seek to enable the 
use of declarative, prior knowledge beyond the design specification, e.g. the likelihood 
of various faults, the observables and costs of tests; as well as to provide a more 
principled and flexible basis for preferences among fault hypotheses, e.g. via non- 
monotonic reasoning and reasoning about bias, than in previous AI approaches [14, 211 

Theory Reformulation 

Understanding the role of representation in problem solving has long been recognized 
as a central problem in AI research. The question of how to reformulate a problem 
description to make its solution transparent is at the heart of this problem. The 
canonical examples cited are from the world of puzzles -- the mutilated array problem 
and the missionaries and cannibals problem. The latter was extensively analyzed by 
Amarel, to identify shifts in problem representation that make the solution process 
more efficient. 

We have decided to concentrate on the largely unaddressed area, of problem 
reformulations under a given problem solving method. Within it, we seek to study the 
class of efficiency reformulations that can be applied to a problem specification. We 
will carry out this investigation in the domain of digital circuits. Given a first order 
logic description of a circuit at a given level of detail (which should be sufficient to 
solve the problem at hand), we will find a suitable reformulation of structure and 
behavior rules of a circuit to make a certain class of problem solving (e.g diagnosis, 
simulation) easier (have better space/time efficiency). This domain is chosen mainly 
because a preliminary analysis shows that it is amenable to the sorts of reformulations 
we wish to consider. 

Counterfactual Impllcatlon 

A type of inference that we have just recently begun to consider is that appearing in 
“commonsense” implication. Consider the statement,’ “If it hadn’t been raining 
yesterday, we would have had a picnic.” Assuming that it was in fact raining, any 
complete inference scheme (such as the resolution-based theorem prover in MRS) will 
conclude that this statement is valid. We plan to continue the formal investigation of 
counterfactuals already begun and will implement the results of the investigation in 
MRS. In light of the fact that MRS has already been used to develop diagnostic aids in 
the domain of digital hardware, this seems an ideal opportunity to test both the 
applicability and effectiveness of this use of counterfactuals. We also hope that the 
inclusion of a counterfactual inference mechanism in a general-purpose expert system 
building tool will help illuminate the precise extent of the usefulness of counterfactuals 
to AI generally. 

SOAR: An Architecture for General Intelligence and Learning 

SOAR is to be an architecture for a system capable of general intelligent behavior 
-- of assimilating and working on novel tasks, using diverse knowledge, learning by 
experience, and reflecting on its own behavior. Work to date with SOAR already 
provides evidence for significant advances towards attaining such an architecture. We 
plan to continue the development and investigation of SOAR -- to test and augment 
the principles on which it is built, to expand its functionality, and to have it perform a 

Privileged Communication 159 E. H. Shortliffe 



Core Research and Development 

wide range of demanding tasks. Our ultimate objective is to fashion an architecture 
that is capable of supporting the full range of flexible activities required of intelligent 
behavior. 

SOAR embodies a collection of mechanisms and organizational principles that express a 
set of distinctive hypotheses about the nature of the architecture for intelligence. 

1. Uniform task representation by problem spaces. Every task of attaining a 
goal is formulated as finding a desired state in a problem space (a space 
with a set of operators that apply to a current state to yield a new state) 

[52]. Hence, all tasks take the form of heuristic search. 

2. Any aspect of a task as an object of goal-oriented attention. This includes 
the system reflecting on its own problem-solving behavior. An exact 
formulation of this property requires some care, because the architecture 
itself is a fixed structure. The essential feature is that no domain-dependent 
procedures lie outside the goal system -- for implementing operators, 
selecting operators, analyzing situations, or anything else. 

3. Uniform representation of procedural knowledge by a production system. 
SOAR is realized in a specialized production system. All satisfied 
productions are fired in parallel, without conflict resolution. Productions 
can only add data elements to working memory; the architecture is 
responsible for all modification and removal. 

4. Knowledge to control search is ultimately expressed in a system of 
preferences. Search-control knowledge is brought to bear by the additive 
accumulation (via production firings) of data elements. The end-result is a 
set of elements called preferences (about the various alternatives for 
behaving in a problem space). 

5. AU goals arise to cope with difficulties in problem solving. Ultimately 
difficulties arise from a tack of knowledge about what to do next. In the 
immediate context of behaving, difficulties arise when problem solving 
cannot continue. These difficulties are detectable by the architecture, 
because the fixed preference decision procedure concludes successfully only 
when the knowledge is adequate. It fails otherwise and the architecture itself 
creates goals for overcoming the difficulties. This principle of operation, 
called universal subgoaling, is the most novel feature of the SOAR 
architecture, and many other features build upon it, e.g., automatic detection 
of goal attainment and learning by chunking. 

6. The basic problem-solving methods arise directly from knowledge of the 
task. SOAR realizes the so-called weak methods, such as hill climbing, 
means-ends analysis, alpha-beta search, etc., by adding search-control 
productions that express, in isolation, knowledge about the task (i.e., about 
the problem space and the desired states). The structure of SOAR is such 
that there is no need for the organization of this knowledge in a separate 
procedural representation. This is another novel feature of SOAR. 

7. Continuous learning by experience through chunking. SOAR learns 
continuously by, in effect, automatically caching all of its goal results as 
productions. (This mechanism appears to be directly related to the 
phenomenon called chunking in human cognition, whence its name.) It 
learns both operators and search control, and it produces significant transfer 
of learning to new situations both within the same task and between similar 
tasks. This ability to combine learning and problem solving has produced 
the most striking experimental results so far in SOAR. 

E. H. Shortliffe 160 Privileged Communication 



Core Research and Development 

Our research will have a breadth-first flavor as we seek to add major intellectual 
abilities to SOAR, to make SOAR robust, and to develop a theoretical foundation for 
the SOAR design. Only the additions to SOAR are listed below for brevity. 

Chunklng as a general learning mechanism 

We are currently investigating two areas where chunking may be found wanting: 
recovering from overgeneral learning and learning from examples. The first area 
involves being able to learn new chunks that override previously learned chunks that 
were overgeneral (that is. chunks that applied inappropriately). Since SOAR only learns 
from experience, we are investigating ways for SOAR to retry an errorful problem- 
solving episode more carefully. During the retry, it may be able to override an 
incorrect chunk and learn new chunks that will correct that chunk in the future. 
The second area involves extending chunking. While chunking is based on learning 
during problem solving, the inductions necessary to learn from a set of examples appear 
at first glance to require a quite different learning mechanism. This research effort 
attempts to unify learning from examples with learning while problem solving. This 
extension is only one of several that could be probed to test whether chunking really is 
a general mechanism. (Actually, the right way to pose this issue appears to be what 
other aspects of problem solving must be coupled with chunking to accomplish each 
type of learning -- where chunking operates as the final memory-modification 
mechanism.) 

Planning 

Abstraction planning appears to be a natural uniform activity in problem solv$ [Ud 
and it appears to translate into a natural uniform activity in SOAR. 
concentrate our initial efforts on this type of planning, because it seems more likely to 
prove useful with all tasks. Initially, for tactical reasons, we will work with tasks that 
are already operational in SOAR. such as the RI configuration task. Abstraction 
planning, especially with the constraint of universal applicability, should provide a 
major challenge to SOAR, since it poses quite novel design considerations, not present 
initially or in the extension to chunking. If SOAR adapts gracefully to planning, we 
will have another major item of evidence for SOAR. Contrariwise, if major difficulties 
arise, we should be able to discover some important limitations to the principles on 
which SOAR is built. 

Problem-space creation 

The creation of appropriate problem spaces is a critical aspect of SOAR’s performance. 
For SOAR, creating new and better problem spaces takes the place of creating new and 
better representations. So far, SOAR does not do this. The problem spaces that are 
used are all instances of a few general problem spaces (for resolving ties among a set 
of objects or for evaluating an object or operator by looking ahead in the original 
space) or of user-created spaces (as in the gross means-ends structure of RI-Soar, 
Dypar-Soar, etc.). Indeed, it came as a surprise that we were able to avoid problem- 
space creation as a major roadblock early in the development of Soar2 and Soar2. But 
any substantial degree of generality for SOAR requires a powerful capability for 
creating problem spaces. 

Privileged Communication 161 E. H. Shortliffe 



Core Research and Development 

2.2.1.3. Resource Hardware and Core System Development 

Introduction and Background 
We have already explained the systematic evolution of SUMEX-AIM from its original 
conception as the central node for a national community of biomedical AI scientists to 
a more and more distributed community and computing environment. We now want to 
sketch our plans for the hardware and system development of the resource for the 
proposed new grant period. 
In summary, our development efforts will build on our past experience with Lisp 
workstations, attempting to make a more effective and intelligent computing 
environment for AI research and the dissemination of AI systems out to biomedical 
user environments. Just as our core research and AI applications efforts are aiming for 
systems that will have their impact 3-5 years from now, our computing systems work 
aims at the hardware foundations and system facilities of the same period. Certainly 
the current trend toward cheaper and more powerful workstations will continue. So as 
these machines become more ubiquitous, we must develop the system software that will 
give users the tools to take advantage of these machines in all their power and 
flexibility. This includes the full range of tools such as text processing, electronic mail, 
file manipulation, budget preparation and control, drawing and so on that keep 
workstation users tethered to expensive and overloaded mainframe systems. But it also 
includes extensions so that users can interact more effectively with their computing 
environment through more intelligent customized interface agents and can take 
advantage of the networked concurrent architecture these workstations represent. We 
plan no changes to our mainframe hardware facilities, but will continue to operate 
them for the on-going work of our community as possible with decreased DRR support. 
As we will be discussing more fully, the growing collection of hosts and workstations 
has forced AI, distributed system, and networking researchers to reexamine the question 
of how to use many processors on a high bandwidth local area network (LAN) most 
effectively. Viewed as one large interconnected system, the amount of AI research that 
can be done is many times more that what was possible just five years ago, but we are 
encountering limitations because the traditional organization of such distributed 
processing power in fact wastes much of this power. At present the bottleneck in the 
development of network-based systems has become the software, with much of the 
potential of the powerful workstation hardware being unrealized. The first key is to 
find the appropriate role for the workstations within the context of the whole network- 
based system [58]. 

Workstations and Networking 
From the outset, as our research computing began moving off of mainframe computers 
and onto a variety of personal Lisp machines, it was clear that these systems were an 
integral part of a larger network environment for the development, maintenance, and 
distribution of software and for access to services that are only cost effective as 
community resources. Systems software is continually being developed by both our own 
staff and the Lisp machine vendors. A network system facilitates the sharing and 
distribution of these software efforts and servers such as large disk files. file backup 
systems, high quality printing, remote network gateways. and shared mainframe hosts are 
best shared through network interconnections. 

It is not possible or desirable to run all applications on the workstation [SS]. For 
example, large database applications require huge amounts of disk storage and some 
graphics or signal processing applications are processor intensive and need special 
hardware. Printer services require knowledge of a diverse set of fonts and special text 

E. H. Shortliffe Privileged Communication 



Core Research and Development 

processing languages like Impress or Postscript, and processing mail needs address 
resolution and domain name servers. Still further restrictions are that particular 
workstations are tuned to run a particular flavor of Lisp and its extensive system 
support environment. Consequently, workstations have been tailored for a particular 
processing need, and to then look for the auxiliary software and hardware requirements 
elsewhere. Since our research staff and users do not all reside in the same building and 
since Lisp machine hardware and network servers are organized around computer rooms 
with cable length restrictions, we cannot currently give people the needed flexibility in 
geographic access to use a Lisp machine from anywhere on campus or from home 
either. 
So, when a distributed system is viewed as a collection of heterogeneous hosts 
comprising one interconnected system, the system as a whole has a maximum work load 
potential which is a function of the resources of each of the hosts in the system, and 
the ability of these hosts to communicate with one another via the LAN. Currently, 
access to such systems and effective use of their resources fall far short of the potential 
for at least the following reasons: 

. Lisp Machine Cost: While costs continue to fall. the highest performance 
Lisp machines are still rather expensive, ranging from around $30,000 to 
$120,000 and this is out of the reach of many researchers. Entry into the 
system is through a personal workstation and we are not able to afford 
giving each researcher dedicated access to the best systems. In effect without 
flexible access facilities, the limited number of personal computers provides 
for rigid control on the number of users. Unlike time-sharing systems 
where response degrades with each added user but where there is no rigid 
limit to the number of users, in a distributed environment without access to 
a personal Lisp machine, you cannot use any computing resources [SS]. 
There is currently no adequate means of sharing these workstations and 
consequently keeping the cost per user at a minimum, and the usage per 
machine at a maximum. 

. Operating System Differences: In order to use a remote host to run a 
program a TELNET connection must be established with that host. The 
user then logs in and runs the desired programs. This implies that a user 
must understand the details of the executive commands and file systems of 
several operating systems if he wishes to take advantage of all hosts on a 
network to aid his research. 

. Network Protocols: Communication between hosts on the network is by the 
network protocols that each vendor supplies. In our unavoidably 
heterogeneous computing environment. most mainframes do supply servers 
for some protocols but not all mainframes supply servers for all protocols. 
Also, some protocols may run very efficiently on a server and others may 
not. This is certainly the case with respect to IP/TCP versus PIJP/BSP 
under UNIX. IP/TCP is part of the UNIX kernel and PUP/BSP runs in 
user space making the latter much less efficient. This inefficiency is 
particularly noticeable as the number of connections increases on our file 
servers. 

. .Resoutce Constraints: A user cannot easily get a picture of what the load 
distribution is on the combined system resources. One server or mainframe 
may be idle and others busy. 
did a time-shared 

In fact, users simply view this system as they 
mainframe. In each circumstance the researcher has 

important work to do, and correctly sees the underlying system as a resource 
to get that work done in a timely way, and often under the pressure of a 
deadline. Thus, they push a particular environment for all that it is worth 

Privileged Communication 163 E. H. Shortliffe 



Core Research and Development 

and the limitations of these environments are exposed and often pushed to 
unworkable extremes. Underlying a mainframe system is an operating 
system and scheduler that can manage and allocate its resources as a 
function of the number of users. In our current system access and 
allocation is at best ad hoc. and for the most part managed by each user. If 
our timesharing experience yields any axioms, then one of would be: In any 
computing environment users will attempt to reach or exceed the maximum 
work load potential of that system. Consequently, the resources of the 
system must be well managed by an agent that can visualize and 
appropriately and effectively ailocate them. 

. Remote Connection Costs: The primary means of accessing a remote host is 
to establish a TELNET connection and then run jobs as if you had a direct 
terminal line connection to that host. Maintaining a smooth typing response 
over a network is very expensive and the actual processing return for the 
work done on both the workstation and the remote host itself per keystroke 
is quite small. The cost of processing one character per packet is not that 
much more than the cost of 512 characters per packet. The overhead is with 
respect to the frequency with which the packets themselves must be 
processed in order to give the appearance of smooth typing. Efficient 
management of resources should be done in such a way that typing. mouse 
or voice interaction, view management and screen refresh are processed on 
the local workstation, and that communication with the remote host is task- 
oriented at a high conceptual level, and, consequently. minimal. 

l Network Transparency: The network itself is not a transparent medium of 
communication in the system. If a user wishes to run a job that cannot be 
run on his workstation, he must log onto a particular mainframe that is also 
connected to the network, and run his job. If he wishes to retrieve a file he 
must know the file server on which that file resides. The user must always 
be aware of the various components of the system itself. When one uses a 
mainframe, he need not know how many disk drives, lineprinters. CPUs. 
buses, or i/o channels are involved in his getting a task accomplished. It 
would be considered absurd for the user to have to know on which disk 
drive his files are stored. The mainframe hardware is transparent to the 
user. This should analogously apply to a networked system but in most 
instances does not. 

l Concurrent Process Execution: Some tasks may take several hours or longer 
to complete even on the most powerful Lisp machine. There is currently no 
generally accessible and satisfactory way of running such a task and sharing 
its processing among several idle Lisp machines, even if the task is one that 
can be separated into distinct and independent steps. As we undertake more 
and more complex AI applications and as we divide tasks logically between 
machines (such as is proposed for the Interviewer and Reasoner parts in the 
dissemination of the ONCOCIN system), parallel processing and use of 
workstations resources becomes an essential part of the future computing 
environment. Projects such as the HPP Concurrent Symbolic Computing 
Architectures project are working on parallel system designs with orders of 
magnitude improvement in performance. The results of this work are a 
long way off, however, and in order to reach those goals, researchers require 
a method of more effectively utilizing concurrency in available distributed 
machines.. 

SO our plan is to work on reducing these limitations, concentrating on enhancing the 
computing environment of Lisp workstations and more effectively exploiting their 
combined resources. 

E. H. Shortliffe 164 Privileged Communication 



Core Research and Development 

Central Resource Operation 
Our central mainframe computers have been powerful and superb resources for the 
SUMEX-AIM community over the past 12 years. However, the trend toward distributed 
workstations is clear and it would be inconsistent for us to seek full DRR support for 
these central machines for another 5 years. Still. we recognize that there is a 
community of users, particularly young projects which need seed support prior to 
obtaining major funding, who will depend on the central shared mainframe for several 
years. Therefore, we plan a conservative and responsible phase-out of these machines. 
We will discontinue DRR support for the DEC 2020 demonstration machine and the 
shared VAX 11/780 time-sharing system starting in year 14. We will phase-out the 
central 2060 more slowly, budgeting 80% support for its operations in year 14 and 
decreasing this in 20% steps until there is no remaining DRR subsidy by year 18. This 
should allow ample time for remote users to find and fund alternative computing 
resources, most likely workstations local to their research environments. 

Hardware Purchases 
Our hardware purchase plans for the next grant term are modest and are aimed at 
maintaining access to state-of-the-art workstations for our core work. For example, 
Xerox has just announced a mode1 of ‘the 1100 series machine that is expected to sell 
for $18.000-19.000. run InterLisp at comparable speeds to the 1108, and have a second 
integrated machine able to run IBM PC software. Other machines are being designed 
by Texas Instruments, Hewlett-Packard, Symbol&, Japanese manufacturers, and others 
that will strongly influence the system goals we have for the next 5 years. Thus, we 
budget $75,000 per year for new workstation hardware. In the first year we will buy 4 
of the new Xerox systems for use in our development efforts and as part of the 
ONCOCIN dissemination research. We will select future year purchases from the then 
available systems. 

The Lisp Workstation Distributed System/Kernel 
Much work has already been done on distributed computing systems that we want to 
take advantage of, including work in our own Stanford Distributive Systems 
Group [39, 37, 91. By supporting a distributed operating system the workstation may 
perform any function best suited to the user, the hardware, and the applications at 
hand [SS, 38, 40, 601. An implementation of this model consists of cooperating 
kernels providing an interprocess communication system, and services implemented as 
processes. Related work for distributed concurrent systems has also been done using the 
Actor/Apiary model [32], and the Contract-Network model [67]. In the Actor/Apiary 
mode1 computation is performed by independent computing elements called actors 
which communicate with each other by message passing. The Apiary is a networked 
architecture for cooperating processors. The Contract-Network mode1 provides 
negotiations for not only what is to be done but also who is best suited to do it. 
In our initial approach, a Lisp Workstation distributed System (LW System) will be 
based on the Y System [37] but will differ in the following respects. The V system 
incorporates both the V kernel interprocess communication as well as a V operating 
system which provide a total distributed operating system for those hosts on which it 
runs. But each Lisp machine for which we are targeting this design already has a 
highly-developed operating system. Functions such as process control and memory and 
device management already exist on these workstations, as do the tools necessary for 
managing the mouse. windows, and menus. The V Kernel interprocess communication 
primitives, using a fixed-length synchronous message protocol, do not. In this context, 
processes can reside on any host on the LAN, and communication between any of these 
processes is possible. The marriage of interprocess communication with existent 

Privileged Communication 165 E. H. Shortliffe 



Core Research and Development 

operating systems in this fashion provides the basis for a distributed operating system. 
The resulting kernel is what we will call the LW Kernel, and the resulting system the 
LW system. 
This wedding of the V Kernel message protocol and semantics with existing and 
powerful Lisp machine operating systems should yield a LW system with the strengths 
of both systems. The LW system will be able to take advantage of the extensive work 
in remote process execution and virtual graphics already incorporated in hosts running 
the V system. For example: The V system runs on non-Lisp diskless MC-68000 based 
workstations that can now be purchased for $8000. We have already written 
applications that run in InterLisp- on the DEC 2060 that allow us to remotely drive 
the virtual graphics terminal service (VGTS) software in these diskless workstations. 
On a moderately loaded DEC 2060 the remote creation of views, windows, the placing 
of graphical objects such as text, splines, lines, and rectangles in these windows, and the 
interaction of menus sent from the DEC 2060 with user **mouse-buttoning” on the 
workstation is very responsive. By porting the remote graphics software written for the 
DEC 2060 to any Lisp machine and then TELNETing into that Lisp machine from a 
workstation either at home or on the LAN immediately allows remote access to that 
Lisp machine from those locations. It should be noted that all remote graphics is done 
with the interprocess message protocol, and that the amount of information necessary 
for all but the graphics commands involving bitmaps is minimal and therefore 
achievable over relatively low speed lines. # 
In this model, the network consists of a collection of resources accessible by clients and 
managed by servers. A client can be either a program or human user [37]. In this 
context client and server are just “roles” played by processes. For example: A user or 
application might make a request of a file server. Here the user/application is the 
client and the file server is the server. The file server then may make a request of a 
disk server in which case the file server becomes a client and the disk server the server. 
An LW exec will run as a process on a Lisp machine, and have its own executive 
window for command processing. This exec will have access to the entire LW System, 
and thus the LW Kernel which also runs as a process. Given the above model we 
might have the following example: Suppose the user wishes to run SCRIBE on some 
server in the distributed system. The user types “SCRIBE myfile” in the LW Exec 
window. The LW Exec creates a client process on the local host, and this client then 
queries the system for the best server for running SCRIBE and blocks waiting for a 
reply. When a server replies the local client then opens SCRIBE as a file to execute on 
the remote host. If this open is successful, the server has then created the SCRIBE 
process which then becomes the client while the Lisp machine client becomes a server. 
The SCRIBE client then requests input from this server, and receives the stream 
“myfile” which the client opens. The client runs SCRIBE and sends the results to the 
server which displays them in the local window. When SCRIBE has completed it closes 
the transaction and goes away. The local client/server ceases to exist, and the window 
is left for the user to peruse, and take further action on if desired (like printing the 
document). 
Beneath the above scenario several other transactions took place. To initiate the first 
client/server relationship knowledge of the server willing to run SCRIBE was necessary. 
To accomplish this initial rendezvous the Lisp machine client needed to first determine 
where to run SCRIBE, and then log onto the remote system via that server. 
Determining where to run a process can be done within either a static or dynamic 
partitioning of the underlying distributed system. 
In the static partition each host has a defined set of processes it is best suited to run at 
initialization time, and then this is invariant over the lifetime of that configuration. 
Dynamic partitioning is done when load sharing over the distributed system is desired 

E. H. Shortliffe 166 Privileged Communication 



Core Research and Development 

and this can often require process migration to maintain system load equilibrium. Load 
sharing in this sense can only be used when the systems are relatively homogenous [58]. 
That is to say, one cannot migrate an executable Dandelion process to a 3600 because 
of the inherent hardware differences, although these two systems can have a 
client/server relationship because the process to process communication is machine 
independent., 
So, in our example a static partitioning means that not all systems can run SCRIBE, 
and only those willing servers will answer. In this simple partitioning two servers are 
in the same equivalence class if they provide the same services. Here we say the 
distributed system is partitioned with respect to willingness. In the dynamic partition 
there is one equivalence class since all hosts are essentially identical. There are other 
partitionings worth examining. 
Consider the relationship where two servers are equivalent if they can execute the same 
processes. Each of the equivalence classes in this partition is then dynamically 
partitioned with respect to load sharing with process migration. Here for example we 
might have four equivalence classes: SUN 68000 workstations, Xerox D-machines. 
VAX’s, and 3600’s. Note also that the system is always partitioned with respect to 
willingness. 

There is also a slight variation on partitioning with load sharing. In this case we first 
statically partition the system with respect to willingness. Then we add the following 
constraint: A process will be run on the feast loaded host willing to execute that 
process. This simple variation makes the system responsive to overall load without 
process migration. Thus, in our example we would have received three replies from 
servers willing to open SCRIBE for execution, as well as their load averages. One can 
then select the system with the least load to be the server or perhaps use more 
intelligent planning for complex multi-step tasks, anticipating future demands. The V 
system currently achieves load sharing without migration by running processes on the 
least loaded host. In our implementation we will begin by partitioning the distributed 
system with respect to willingness, and then experiment with the least loaded host 
constraint on this partition. Ultimately we are aiming for load sharing with process 
migration within classes of equivalent hardware configurations. Note that concurrency 
can be achieved in the simplest of these schemes. 
Access to the file “myfile” was also necessary. This involves locating the file, it can 
reside anywhere in the system, and then acquiring read access privileges. Instead of 
sending “myfile” the filepath of “myfile” would have been determined on the Lisp 
machine, and the SCRIBE client would have then retrieved that file from its known 
source. This latter server could be a file server anywhere in the LAN. 
The LW Kernel has then acted as an intelligent interface between clients and servers. 
Beneath the kernel the roles of processes may change and this is totally transparent to 
the kernel itself. A kernel or server of such a distributed system acts analogously to a 
hardware bus, being essentially a communications switch. In addition to the physical 
wires used to connect modules in a hardware bus, a standard bus arbitration protocol is 
agreed upon to define the semantics of the communication. Analogously, in our 
software model, in addition to the ability to send or receive a message, a protocol is 
defined for the semantics of the messages [SS]. 

Machine Independent Interprocess Message Protocol 
The machine independent interprocess message protocol is used to send, receive or 
forward messages between processes on either the same workstation or any workstation 
on the LAN which implements this protocol. These messages are synchronous and in 
implementations like V are fixed-length to minimize overhead in both the message 

Privileged Communication 167 E. H. Shortliffe 



Core Research and Development 

sender/receiver interface as well as the parser. One can for example then allocate fixed 
length message buffers in the kernel for message queuing. The communication between 
processes is intended to look like procedure calls to the sender in the sense that at the 
highest level a sender calls a procedure with its specified parameters, and then as a 
process blocks awaiting a return value in the reply message. Note that this is unlike the 
actor model where messaging is asynchronous. In our model a degree of synchrony can 
be tolerated because the frequency of messaging is very low when compared to process 
execution time, and if one desires concurrency a server process can be spawned and 
then block awaiting a reply. 
In order to send a message to a process. a “token” which includes both a host identifier 
and process number at that host is required. At each workstation the LW Kernel 
supports a process registration scheme that associates a logical process identifier with 
the registrant’s process identifier [37]. Processes can then query the kernel for the 
process identifier corresponding to a known logical process identifier. This query is 
supported throughout the distributed system by the means of a process-query broadcast 
packet. Thus, having possession of such a token is sufficient to allow the passing of a 
message to the associated process. On a local host the kernel’s token is globally defined 
to enable dispatching messages to the kernel itself. 
In order to implement what are essentially calf by reference parameters, a process can 
pass access permission to a memory segment to the recipient of a message. This access 
includes read, write and execute modes as well as the address of the segment. This is 
primarily used for file activity and buffers associated with those files but can also be 
used for creating processing “locks” on critical regions and marking data areas as read 
or write secure in conjunction with password or special process identifier privileges. 
When a message is sent by a process, ultimately that message is formulated as a token, 
called procedure number, and called procedure parameters in a predefined network byte 
order which is transparent to both the sender and recipient of the message, and then 
dispatched by the resident kernel. The receiving kernel will then validate the token, 
and queue the message in a kernel message data buffer for the receiving process. The 
receiving process is scheduled by the kernel and when it is called uses a kernel 
procedure to formulate the data in the buffer as a procedure call and simply calls that 
procedure if it exists. Messaging between processes can be accomplished without 
addressing extensive programming language issues by using fixed length interprocess 
messages where each field in a message also a fixed length for which 32 bits is the 
chosen standard. This is sufficient for both integer and pointer constants since one can 
implement double precision if necessary. Under some circumstances a segment of data 
can be appended to a message. This segment is variable up to a maximum. There is a 
separate data transfer facility for moving larger amounts of data [70]. 
Consequently, the above formulation does a syntax check within the context of the 
called procedures parameter specifications, ie. placing the correct number of 32 bit 
values on its “calling stack,” and calling the procedure in that context. Such a remotely 
called procedure should then validate the parameters within the semantics of its 
properties, then execute and return a message to the caller. 
For some applications it is necessary to implement the more extensive support of a 
chosen base language’s syntax and semantics. 
checking and parameter parsing must be done. 

Here programming issues such as type 
The V system, for example, uses this for 

its remote virtual graphics terminal service (VGTS) calls. Recognizing that for 
interprocess communication and kernel calls a simple synchronous message exchange 
will do, and that for more complex applications programming language considerations 
must be handled is important for both efficiency and ease of implementation. 
Certainly, distributed kernel interaction must be simple and fast if it is to be 
transparent to the system as a whole, and the ‘*process world” if you like can be defined 

E. H. Shortliffe 168 Privileged Communication 



Core Research and Development 

quite easily within the file constructs that such a messaging scheme easily supports. 
After all, a process can be viewed as a file open for read and execution, and 
complicated parameters such as strings and records can be passed as a data stream when 
necessary. Here one simply creates a data stream pipe between two processes and allows 
them to send data in buffers as their applications require. Pipes can be viewed as LW 
System supported standard f/U files, and read/write requests on those files. In these 
latter instances type checking, if necessary, can be done in the caller/callee context thus 
minimizing the overhead to those contexts where it is required. Thus, the VGTS 
application could be structurally imposed on top of process to process pipes with the 
parameter passing, and type checking synchronized by the processes involved. 
The LW Kernel uses this interprocess message protocol to implement those operations 
necessary to send, receive and forward messages between processes as well as for 
creating, querying, and destroying processes throughout the distributed system. This 
protocol is transaction oriented, each message a send/reply pair and has less load 
impact on client/server communications then TELNET with its continuous “sub- 
connection” exchanges used to maintain an open connection state. This points towards 
a more robust and responsive distributive system when multiple clients are running 
processes on the same servers. 

Protocols - Uniformity Across Vendors 
Underlying all network I/O must”be a network protocol for packet transfer between 
cooperating hosts. At SUMEX we have had long term experience with several such 
protocols: PUP/BSP, PUP/EFI’P, IP/TCP, IP/TFIP, IP/UDP, and NS/SPP are those 
most commonly used on our LAN. PUP/BSP and IP/TCP have been used to 
implement both FI’P and TELNET, PUP/EFTP is an Easy File Transfer Protocol on 
top of PUP used for boot like services, IP/TFI’P is a Trivial File Transfer Protocol 
which uses IP/UDP datagrams, and NS/SPP is a Sequenced Packet Protocol similar to 
PUP/BSP and is used for FTP and TELNET. In the past we have elected to write 
servers for each new protocol in order to accommodate both vendor hardware and 
systems software. This was necessary because no one protocol has been supported on all 
such systems. 
We are pleased that the Department of Defense IP protocol family is now supported on 
all hardware/operating system configurations at SUMEX and on those we anticipate 
purchasing in the future: IP software is available on the XEROX 1100 series 
workstations as of the Intermezzo system release, on Symbolics systems we have been a 
beta-test site for their IP software since their 5.1 operating system release, and we will 
be a beta-test site for the TI Explorer IP software this August. Similarly, IP is 
supported on all of our UNIX based file servers, and the LAN gateways route all IP 
datagrams. 
There has been a great deal of deliberate effort at Stanford and SUMEX to enforce IP 
as a standard protocol for new software development. This was motivated by its broad 
acceptance and the growing number implementations throughout the networking and 
vendor communities. This does not imply that we will abandon the other protocols but 
rather since we are seeking to have uniformity across all vendors with this proposed 
distributed operating system we are choosing to implement it on top of the IP protocol 
family. 
In particular we are going to continue in this direction and use the IP/UDP (User 
Datagram Protocol). We have benchmarked all of the protocols in the above set with 
respect to their implementations on each of the workstations and file servers we now 
use. FTP using IP/TCP and PUP/BSP perform similarly on unloaded systems. They 
both peak at about 200K bits/set. and this maximum is really workstation/CPU limited 
rather than communication bandwidth limited. On a moderately loaded UNIX based 

Privileged Communication 169 E. H. Shortliffe 



Core Research and Development 

file server PUP/BSP performance begins to degrade much more rapidly than IP/TCP 
since the latter is implemented in the UNIX kernel and the former is not. This results 
in redundant copying of both the data and datagram header information from kernel to 
user space for the PUP/BSP code, and thus, its performance varies inversely with the 
system load. 
The XEROX 1100 series workstations use PUP/Leaf for random file access. With 
Intermezzo PUP/Leaf achieves a maximum transfer rate of about 40K bits/set on 
1108’s and 80K bits&c on the 1132’s. We wish to achieve transfer rates in the 
neighborhood of 200K bits/set for such file access. We feel that the 1100 series are 
currently limited by their single priority level round-robin scheduler. Weighting all 
processes equally is disadvantageous in this case since the emptying of the packet input 
queue is handled by one of these processes, and this process is the critical path with 
respect to maximizing transfer rate. Using the TFTP based on IP/UDP we managed to 
achieve 67K bits/set on an 1108 and 90K bits/set on the 1132. This is quite 
encouraging since TFTP uses a simple packet/acknowledgment exchange for data 
transfer. By augmenting this algorithm to allow multiple outstanding packets we ought 
to achieve 1OOK bits/set on the 1108’s and perhaps 15OK bits/set on the 1132’s within 
the InterLisp environment’ This expectation is not overly optimistic since PUP/BSP 
was recently rewritten for exactly the same reason. We increased the outstanding packet 
window from one to four and the maximum transfer rate went from 67K to 200K in 
the mesa environments on these same systems. Anticipating the preemptive scheduler 
that XEROX is now working on” there is no reason why the InterLisp environment 
cannot approach the mesa environment in these respects. 

Finally, PUP’s and NS packets are limited to 532 and 546 bytes of data respectively, 
and with IP/UDP we can essentially double this size and send packets with 1024 data 
bytes. This along with multiple packet windows should put the transfer rate in the 
neighborhood of 300K bits/set on these systems. It is worth noting that such an 
IP/UDP scheme has been used between M68000 workstations on a lo-megabit net 
achieving a file transfer rate of 800K bits/set. Also, the V systems downloading 
scheme which is encapsulated in IP/UDP datagrams achieves 400K bits/set between a 
M68000 and a VAXll-780. These tests were done on lightly loaded systems. 
IP/UDP is a very simple protocol with very little processing overhead. Unlike IP/TCP 
which allows for packet fragmentation and reassembly, IP/UDP packets are integral 
throughout their lifetime and ideally suited for LAN applications. Another worthwhile 
feature is that the simplicity of the protocol requires very little kernel management, and 
consequently makes multiple client/server interactions quite feasible on even a single 
host server without impacting either the server or distributed system loads. 

The Distributed Operating System Resource Manager 
The distributed operating system resource manager is an intelligent-agent that will run 
on a Lisp workstation with the LW Kernel. It is intended to behave in much the same 
way as a “pie-slice” scheduler does on a mainframe operating system except that it will 
have a knowledge base to govern its decisions. In its knowledge base will be a 
representation of the current partitioning of the distributed system and dynamic load 
statistics of each host in each class in the partition. Additionally, it will attempt to 
learn about not only each client/server type but also each process type. Different 
processes will impact each client/server in different ways. Understanding and 
dynamically adjusting to the impact processes will have on the distributed load is a 
difficult problem and its solution is essential in the development of the resource 
manager. Graphics tools for examining knowledge representations of system load with 
respect to clients, servers, process types and partitioning of the distributed system will 
be provided. 

E. H. Shortliffe 170 Privileged Communication 



Core Research and Development 

When a client wishes to run a process on the system it will query the resource manager 
for the best server on which to run that process rather than query-broadcast on the 
distributed system itself. In a simple scenario, the resource manager will select all of 
those servers with respect to the willingness-partition, and then select the least loaded 
server from this list. If a client wishes to either migrate a process from itself to a 
server in the dynamically partitioned system, or have a server in its class in this 
partition download and run a process for it’ the resource manager can then mediate this 
transaction. It will know which servers in the class are willing to run such a process, 
and from this list select the server that is least loaded or better yet’ maintain idle-time 
schedules of all such hosts and select the host that will be idle for the duration of the 
process execution if possible. 
Certainly, centralizing the functionality of a resource manager will allow us to more 
clearly understand the distributed system and its interactions. Graphical representations 
of system, and server loads, and response to this load by the creation or destruction of 
processes will give us innovative insight into just what rules are necessary to manage 
this distributed resource. Each particular process will impact a particular server in a 
way that is a function of that server’s hardware and operation system’ and the 
complexity of the process and its resource requirements. Consequently, the knowledge 
base and rules relating its members will grow with respect to each process type as well 
as each server type, and as the resource manager begins to understand their interactions. 
Also’ simply having a resource manager with a server that knows which parts of the 
distributed system are working at any given time will prevent a great deal of user 
frustration. Given the large “granularity” of processing time and the relative 
infrequency of communications between these processes will initially allow us to 
develop such a manager on an independent LISP machine. If we reach the point where 
the trade-off between processing time and communication load becomes critical it may 
be desirable to install the resource manager in several or all of the nodes in the 
distributed system. 
Just how an intelligent-agent resource manager will behave under all instances of 
distributed system interaction is an excellent area for AI/distributed operating systems 
research. 

Implementation 
Initially, we plan to implement the LW Kernel on Xerox 1100 series workstations. 
These systems have a remarkable programming environment’ and a large set of 
networking debugging tools to facilitate the development of the distributed kernel. We 
also have an excellent working relationship with the systems software group at Xerox. 
This will be helpful for timely acquisition of the sources for the system as well as 
information about any problem areas we may encounter. 
The early development of the LW kernel will run in two parallel phases. The 
underlying IP/UDP random access file transfer protocol and the LW Kernel’s 
interprocess message protocols (IPMP) will be done first’ The former will ultimately 
replace the PUP/Leaf service which is a major resource drain on our UNIX file servers. 
This will begin to then move the 1100s towards the uniform IP network standard. 
Also, random file access will be an integral part of the LW System’s standard I/O file 
access, and data transfer mechanisms. Uniformity and optimization of file transfer is 
important if the distributed operating system is to be responsive when servers are 
loaded. The LW Kernel interprocess message protocols are central and necessary for all 
distributed system operations. The latter and random access file I/O are initially 
independent mechanisms and can be developed separately. 
Since the LW Kernel’s IPMP are transparent with respect the the distributed system, the 
entire mechanism can be written and debugged on a single workstation without network 

Privileged Communication 171 E. H. Shortliffe 



Core Research and Development 

interaction. The kernel runs as a process on each host in the system, and dispatches 
messages intended for itself and any other host in the system. All that is required to 
send a message to the kernel is access to the kernel’s “token,” and this is globally 
available on the workstation itself. So, initially one writes the kernel process and the 
primitive message dispatching stubs, Send, Receive, and Forward. This will be followed 
by process operations like CreateProcess, and DestroyProcess along with SetProcessID, 
GefProcessfD. and GerProcessToken. At this time all created processes including the 
kernel process will be able to send/receive messages to/from each other on the 
workstation in exactly the same way that it would be done if these processes were 
distributed. Then we implement the LW System I/O protocols by beginning with the 
pseudo-device pipe server. A pipe is a unidirectional flow-controlled communication 
channel between two processes using the standard I/O protocol [37]. It is implemented 
via sending messages to a pipe-server process. This server may reside on the local host 
or any other host in the system so the implementation generalizes rather nicely. Each 
pipe is a file instance and has one reader and one writer. This may be of course the 
same process. 
The above is written on top of the resident process scheduling and window managing 
functions as well as the file system. Thus calls for creating and d&troying processes, 
opening, managing, and closing windows as well as for file system directory 
management already exist. The kernel process allows us to simply distribute this 
functionality. Once this is working on a single workstation, the software will then be 
loaded onto a dual system and the kernel will then use the network so that we can then 
run processes in a two host distributed model and debug the IPMP in this environment.. 
Once the underlying mechanisms discussed above are working this step should be fairly 
easily accomplished. It reduces to insuring that the kernel’s message queue can be filled 
via the network. The mechanisms involved are identical except that a message must be 
further encapsulated and then sent on the network, and the underlying network software 
already works. 
Based on this work, it will then be appropriate to develop applications using the 
distributed operating system and the IP/UDP random file access protocol. The 
following sections discuss some of the initial applications we will explore. In later 
years we will work on other applications like remote file management, network 
performance monitoring, and more intelligent interfaces for users to systems. 

Mail System 
Providing an effective and responsive mail system is one of the primary goals of any 
modern computing environment. Most users spend at least one hour each day reading 
and responding to their network mail, and this now generally takes place on either the 
DEC 2060 mainframe or one of the UNIX systems at SUMEX What is frustrating is 
that during prime computing time the routine perusal of ones mail often becomes a 
very time consuming task because of the load on these mainframe systems. In fact at 
any given moment during this time 50% of the users can be found running MM’ the 
system mail program, on the DEC 2060. Yet, mail is a very natural function to run on 
an individual’s workstation. To this end, it is one of the first applications directed at 
the LW distributed operating system. 
Indeed, it makes a great deal of sense to have as much of the mail processing as 
possible be done on a user’s workstation. This processing can be partitioned into four 
categories: Mail storage, Mail retrieval, Mail reading and composition, and Mail delivery. 
Mail storage can be done both on the local workstation and file servers. Mail retrieval 
involves transactions between the workstation and the storage medium. Mail reading 
and composition can be entirely done on the workstation, and mail delivery involves 
transactions between the workstation and a domain name server for address resolution. 
and a mail spooling service for the caching and final delivery of non-LAN mail such 

E. H. Shortliffe 172 Privileged Communication 



Core Research and Development 

as that going to a site on the ARPA net and not on the LAN. Let’s address each of 
these four areas. 
Mail Storage: By mail storage we mean the storing of all unread mail as well as read 
mail. Initially unread mail will arrive at a file server or servers in the user’s mail 
delivery path. This is usually accomplished by alias files on hosts that may receive 
mail for a person or mailing-list but on which this mail is not kept’ Alias files 
provide a forwarding mechanism to the ultimate destination repository. In any case the 
mail ultimately arrives at a destination file server known to the person’s resident mail 
process. As each letter is read it is up to the reader’s discretion as to whether or not it 
is to remain on the workstation or be returned to the appropriate file server. Records 
of all mail still in the system will be kept on the file server under the user‘s mail 
account. Rereading a letter that is on the workstation can be short-circuited to remove 
the file server from the loop. The primary activity in this area is then the moving of 
mail between the user’s workstation and a file server(s). This can be expedited with 
minimum overhead using the high transfer rate IP/UDP file service to stream the data 
between a client and server. Indeed, at 300K bits/set most letters will be moved in a 
fraction of a second with very little impact on either the client or the server. 
How this mail is arranged on the server is an important consideration if access is to be 
efficient and the services per letter multidimensional. On each server in the user’s mail 
path the user will have a mail directory associated with his address at the server. The 
directory will be organized into a mail spindle file, mail header file, mail keyword 
file and mail folder files. The latter may in fact be a sub-directory on hosts 
supporting such a scheme. 
The spindle file will have an entry for each letter. Among other things this entry will 
have a pointer to its header in the header file, the folder where the letter is stored, 
status bits indicating the state of the letter. For example: Such bits could be seen, 
unseen, new, deleted, answered and alarm. The alarm bit is then associated with a 
time-date when the user wishes to see this message’s header again. Each entry has the 
date it was read, and the date it was answered. Finally, there will be a bit field 
describing key-words the owner can associate with each letter; and the associated 
keyword file of actual keywords. The spindle file itself will be prefixed with a header. 
This header will at least include time-date stamps of the last read and write access to 
the owner’s mail, a pointer to the entry for the oldest new mail’ ie, mail that has 
arrived since the last time the mail was read, and a pointer to the next alarm entry. 
Thus, when a user first runs the mail process on his workstation the process interrogates 
the mail server(s) in the user’s delivery path. Each such server quickly gathers the 
headers of the newly arrived mail, checks for any alarms that may have gone off, 
incorporates these headers into a message and sends them to the users workstation. The 
actual header file can be built in background mode as mail arrives and system resources 
allow to minimize this processing. Note that none of the text of the mail which is the 
bulk of the data has yet to be touched in this transaction. 
Mail Retrieval: Mail retrieval is accomplished with a workstation client and mail/file- 
server server. The client is mouse driven by at least a selection process that displays 
active letter headers in a window. The headers which appear in this window are 
selected by the user with a mouse/menu interaction. When the mail client is started it 
probes those servers in the user’s mail-path for “new” mail’ ie, letters that have arrived 
since the last read-access to the mail spindle file. These headers will be listed in a 
window which has mouse interaction defined for each such header. One will be able to 
change the displayed headers by commands like headers since <date>’ from <string>, 
& <string>, subject <string>, and G. Reading the letter associated withaader then 
transfers the actual text of the letter from the server to the client with a read-mail 
transaction, unless the letter has already been transferred to the client and is cached 

Privileged Communication 173 E. H. Shortliffe 



Core Research and Development 

there. This transaction causes the read-date stamp and “seen” bit to be updated in the 
spindle file entry. 

Mail Reading and Composition: Mail commands such as read, answer, set alarm, delete, 
and copy, key off of header selection. When one reads a letter it is then read from the 
server to the client by a read-letter transaction. The text is displayed in a window and 
can be scrolled as well as edited. All text editing and composition is done on the local 
workstation. When one answers a letter immediate destination host address recognition 
is mandatory. This can be accomplished by requesting host address validation after the 
addresses have been typed. One can use the domain name server and LAN name 
servers for this purpose. It also makes sense to cache known host names locally and if 
for some reason the name servers do not reply this list can be used for a second guess. 
If all else fails, then one should simply attempt to deliver the letter. If in fact the 
address is not valid, then this- will be noted when the letter is returned to the sender as 
undeliverable. 
Mail Delivery: Once a letter is composed and the sender requests it to be delivered, it 
will be spooled on one of the file/mail servers. These servers already have all of the 
knowledge necessary to deliver any letter to a known host. Mail delivery is done in 
background on these servers by a low priority process’ An attempt should be made to 
spool the mail on the server with the smallest mail queue and such a mail-queue-size 
query message will be sent to those servers that respond to a request-to-send-mail 
broadcast’ Each host can override the latter broadcast by simply remembering which 
servers responded to earlier broadcasts, and thus maintaining a mail-delivery-path for 
directing mail-queue-size queries. The system resource manager will maintain current 
mail delivery information. Often a host in a mail-delivery-path is down for some 
reason, and mailers will continuously attempt to shrink their growing mail queues by 
uselessly badgering this host’ It makes sense to be able to request server-downtime and 
alternative mail routes from a resource manager. If there is no alternative route, the 
mail client/server can periodically check until the host comes up rather than try and 
send mail to a down host which amounts to useless network traffic. 
Ultimately, a mail-server process ought to be able to-run in the background on personal 
workstations, and mail could then be delivered directly to that host for those users who 
desire such a service. This will then take the file/mail-servers out of the mail storage 
and retrieval loop for such hosts’ Mail is simply sent directly to the workstation that 
has a registered address in the domain name server tables’ The mail is then retrieved 
and read “as if” it had already been copied from a remote file/mail-server. This latter 
mechanism is part of the initial design. As mail accumulates on such a host’ the user 
will be able to take advantage of those already existent file/mail-server processes to 
maintain mail archive directories remotely so that old mail can still be examined in the 
client/server role. 

Virtual Graphics Terminal Service 
Virtual graphics terminal service (VGTS) allows the display of structured graphical 
objects on a workstation running the V system [37]. We have already indicated the 
power of this set of tools. While running V on a small and inexpensive workstation 
located either at home or on the LAN, or anywhere that has TELNET access to the 
LAN on which a personal Lisp machine has a TELNET server running, one can then 
access that Lisp machine and drive the graphics display of the smaller workstation from 
the Lisp machine. Geographic proximity of such a Lisp machine is then moot. 
As the ratio of researchers per Lisp machine increases it is no longer possible to 
guarantee Lisp machine cycles to everyone during prime computing time, and a means 
for remotely accessing these machines in graphics mode becomes mandatory. VGTS 
satisfies this need perfectly. In order to install the software tools necessary for remote 

E. H. Shortliffe 174 Privileged Communication 



Core Research and Development 

VGTS access there are two requirements: First the ability to TELNET into a Lisp 
machine is necessary. Second, the interfacing of VGTS primitives with the current 
graphics/window calls on the Lisp machine. We address each of these below. 
Not all of the current Lisp machines have servers which allow the establishment of an 
incoming TELNET connection. Currently, only the Symbolics machines have this 
property. What is necessary here is to modify the outgoing TELNET code where 
applicable so that it can also run as a server process. This is really a straightforward 
task. What is interesting here is just how to globally establish that the incoming data 
stream is to be interpreted by the Lisp machine command executive, and then all output 
characters are to be sent via the TELNET stream and not to the local graphics display 
stream. This redirection of I/O streams is well within the scope of all of our Lisp 
machine operating systems. 
The central concept of VGTS is that application/client programs should only have to 
deal with creating and maintaining abstract graphical objects [37]. The actual viewing 
of these objects is done on the workstation running V. For example: To create a view 
or window on a workstation/server running V from a Lisp machine/client two things 
are required. The client calls a routine to remotely create a file, the structured display 
fife (SDF). which will then contain descriptions of graphical objects. Each such object 
has an client assigned item number associated with it in the SDF. This SDF is then 
associated with what is commonly referred to as a window by first calling a routine to 
create a virtual graphics terminal(VGT) associated with this SDF. and then calling a 
routine to create a view on this VGT. A view is seen as a white area on the screen 
with a border. Thus a VGT/SDF pair can have multiple views associated with it. And 
one can have multiple VGT/SDF pairs at any one time as well as more than one VGT 
associated with the same SDF. The mapping of VGTs to SDFs need can be but not be 
one to one. Each of these calls involves little more than the passing of a few data 
bytes between the client and server. 
Once the SDF/VGT relationship is established and a view is created on the server, then 
graphical objects can be created by adding them as items to the SDF by opening a 
symbol for editing and adding an item to that symbol in the SDF. An SDF then 
contains symbols which are in turns lists of items. An item itself can also be a 
symbol. These objects can then be displayed in the view(s) associated with the VGT. 
Thus, objects can appear on several VGTs at the same time. A client can also create 
menus on the server and then interrogate the actions implied by those menus via mouse 
buttoning. In fact one can actually query a mouse event within a view and receive back 
not only the buttons that were touched but also the VGT number and view coordinates 
of the cursor position itself, or a list of objects that are near the cursor position. This 
allows the client to interrogate, as well as edit viewed objects remotely. One need not 
maintain a great deal of information about objects on the client. In fact, one needs 
only the VGT number, SDF number, which are returned by the server at when they are 
created. and the item number which is sent when items are added to SDFs. A client 
can then inquire about this item and receive its definition as a reply. Thus, VGTS is 
designed to maximize what is done on the server by maintaining the SDF database and 
allowing detailed queries about its contents which can for the most part be driven by 
user/mouse interaction with their graphical representation. 

The VGTS has a resident view manager for moving, zooming, opening, closing, and 
creating new instances of views associated with VGTs. Consequently, the view 
overlaying, manipulating and trimming algorithms do not impact the client. A list of 
the current VGTS object primitives is as follows: 

Filled Rectangle These can be filled either with gray scale shades or stipple patterns or 
black and white monitors, and with colors on color monitors. 

Privileged Communication 17s E. H. Shortliffe 


